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Abstract

In this paper, natural convective heat transfer between two horizontal, elliptic cylinders is numerically studied using

the differential quadrature (DQ) method. The governing equations are taken to be in the vorticity-stream function

formulation. To apply the DQ method, the coordinate transformation is performed. An elliptic function is used, which

makes the coordinate transformation from the physical domain to the computational domain be set up by an analytical

expression. The present method was validated by comparing its numerical results with available publication data and

very good agreement has been achieved. A systematic study is conducted for the analysis of flow and thermal fields at

different eccentricities and angular positions. It was found that the position of the major axis of the inner ellipse takes

effect on the streamlines, and very little effect on the average Nusselt number.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow and heat transfer in an annulus are of practical

importance in engineering applications and involved in

many industrial systems. Applications of natural con-

vection include solar collector receivers, transmission

cable cooling systems, food processing, cooling of elec-

tronic equipment, aircraft cabin insulation, cooling

system in nuclear reactor and etc. In the past a few de-

cades, natural convection in the case of a horizontal

circular annulus was widely studied experimentally and

numerically. The work of Kuehn and Goldstein [1] can

be referred as a comprehensive review for concentric

cases. The experimental and analytical studies for the

eccentric cases include the work of Kuehn and Goldstein

[2], Guj and Stella [3].
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Comparatively, fewer publications were found for

natural convection in a non-circular domain, e.g., the

elliptic domain considered in this paper. Lee and Lee [4]

attempted to simulate the natural convection problem in

terms of elliptical coordinates for the symmetrical cases

of elliptical annuli and performed experiments for this

geometry with a few cases. Schreiber and Singh [5]

studied the cases in horizontal confocal elliptical cylin-

ders oriented at an arbitrary angle with respect to the

gravity vector in the same coordinate system. Cheng and

Chao [6] employed the body-fitted coordinate transfor-

mation method to generate a non-staggered curvilinear

coordinate system and performed numerical study for

some horizontal eccentric elliptical annuli. Elshamy et al.

[7] studied numerically the case in horizontal confocal

elliptical annulus and developed some practical correla-

tions for the average Nusselt number. Publications in this

field are very few, and there is much work to do for

further investigation.

In the numerical simulation of natural convection,

low order methods such as finite difference, finite vol-

ume and finite element methods were usually used. For
ed.

mail to: mpeshuc@nus.edu.sg


798 Y.D. Zhu et al. / International Journal of Heat and Mass Transfer 47 (2004) 797–808
example, the work of Kuehn and Goldstein [1] and

Stella and Guj [8] was conducted by the finite difference

method, and the work of Schreiber and Singh [5] and

Cheng and Chao [6] was made respectively by the finite

element and finite volume method. In general, the low

order methods need a large number of grid points to

obtain accurate numerical results, and as a consequence,

require large computational effort and virtual storage.

To save the computational effort, and in the meantime,

to obtain accurate numerical results, some efficient

methods are demanded. The differential quadrature

(DQ) method [9,10] is such an efficient method, which

approximates the derivative of a function at any location

by a linear summation of all the functional values along

a mesh line. It can obtain very accurate numerical results

by using a considerably small number of grid points and

requires very little computational effort. So far, the DQ

method has been widely applied in engineering [11–15].

However, most of its applications are limited to simple

physical domains. Like the conventional low order finite

difference schemes, the DQ method also requires the

computational domain to be regular. For irregular do-

main problems such as the one considered in this study,

the coordinate transformation technique should be in-

troduced. In this technique, the irregular physical do-

main is first transformed into a regular computational

domain, and the governing equations as well as the

boundary conditions are transformed into the relevant

forms in the computational space. Then all the compu-

tations including the discretization of derivatives by the

DQ method are based on the computational space.

Using this technique, Shu et al. [16] efficiently simulate

the natural convection in an annulus between two ec-

centric circular cylinders by using the DQ method. They

presented an explicit formulation to compute the stream

function value on the inner cylinder wall, which can

efficiently capture the weak global circulation. It was

also found in [16] that the configuration of annulus has a

great effect on the flow and thermal fields. The present

work was motivated from further study of annulus

configuration effect on the flow and thermal fields, and

further exploration for the performance of DQ method

to irregular domain problems.

In the study, numerical analysis for natural convec-

tion between two horizontal concentric elliptic cylinders

is performed to evaluate the heat transfer characteristics

and flow patterns under various geometrical and physical

conditions. Eccentricity between the outer and the inner

elliptic cylinders is not considered in this study, as the

different eccentricities of both the outer and inner cylin-

ders yield too many sets of geometrical combinations.

The vorticity-stream function formulation is taken as the

governing equation, and the elliptic function is used for

approximating the elliptic boundary. As a result, the

coordinate transformation from the physical domain to

the computational domain is set up by an analytical ex-
pression. The SOR iteration method is applied to solve

the resultant algebraic equations. A systematic study is

conducted for the analysis of flow and thermal fields at

different elliptic eccentricities and angular positions.
2. The DQ method

The DQ method is a numerical discretization tech-

nique for approximation of derivatives. It was proposed

by Bellman and his associates in the early of 1970s [9]. In

their work, a partial derivative of a function with respect

to a coordinate direction is expressed as a linear

weighted sum of all the functional values at all grid

points along that direction. The key to the DQ method is

the determination of the weighting coefficients for any

order derivative approximation. A major breakthrough

was made by Shu and his colleagues [11,12], in devel-

opment of explicit formulations for computing the

weighting coefficients. For brevity, a one-dimensional

problem is chosen in the following to demonstrate the

DQ method, where the first- and second-order deriva-

tives of f ðxÞ at a point xi are approximated by

fxðxiÞ ¼
XN
j¼1

aij � f ðxjÞ for i ¼ 1; 2; . . . ;N ð1Þ

fxxðxiÞ ¼
XN
j¼1

bij � f ðxjÞ for i ¼ 1; 2; . . . ;N ð2Þ

where N is the number of grid points, aij and bij are

respectively the first- and second-order weighting coef-

ficients. It was shown by Shu and Richards [11] and Shu

and Xue [12] that all the ways of computing the

weighting coefficients can be generalized under the an-

alyses of function approximation and linear vector

space. It was found that when the function f ðxÞ is ap-

proximated differently, the formulations for aij and bij
are also different. In the following, the respective for-

mulations of aij and bij are presented when the function

f ðxÞ is approximated by a high order polynomial or by

the Fourier series expansion.
3. Polynomial-based differential quadrature

In this case, it is supposed that the function is ap-

proximated by a (N � 1)th degree polynomial in the

form

f ðxÞ ¼
XN�1

k¼0

ck � xk ð3Þ

Under the analysis of a linear vector space, Shu and

Richards [11] derived the following explicit formulations

to compute the weighting coefficients:
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aij ¼
M ð1ÞðxiÞ

ðxi � xjÞ �M ð1ÞðxjÞ
; when j 6¼ i ð4aÞ

aii ¼ �
XN

k¼1;k 6¼i

aik ð4bÞ

bij ¼ 2aij � aii

�
� 1

xi � xj

�
; when j 6¼ i ð5aÞ

bii ¼ �
XN

k¼1;k 6¼i

bik ð5bÞ

where

M ð1ÞðxiÞ ¼
YN

k¼1;k 6¼i

ðxi � xkÞ

It is indicated that a recurrence relationship has also

been derived to compute the weighting coefficients of the

higher order derivatives. For details, see the book of Shu

[10].
4. Fourier expansion-based differential quadrature

In this case, the function is approximated by a

Fourier series expansion in the form

f ðxÞ ¼ c0 þ
XN=2

k¼1

ðck cos kxþ dk sin kxÞ ð6Þ

Similar to polynomial-based differential quadrature

(PDQ), Shu and Xue [12] also derived the explicit for-

mulations to compute the weighting coefficients aij and
bij, which are listed below

aij ¼
1

2
� PðxiÞ
sin

xi�xj
2

� PðxjÞ
; when j 6¼ i ð7aÞ

aii ¼ �
XN

k¼1;k 6¼i

aik ð7bÞ

bij ¼ aij 2aii
h

� cot
xi � xj

2

i
; when j 6¼ i ð8aÞ

bii ¼ �
XN

k¼1;k 6¼i

bik ð8bÞ

where

P ðxiÞ ¼
YN

k¼0;k 6¼i

sin
xi � xk

2

It should be indicated that Eqs. (7) and (8) can be ap-

plied to the periodic problems and the non-periodic

problems. For the non-periodic problems, the x range in
the computational domain is 06 x6 p, while for the

periodic problems, the x range in the computational
domain is 06 x < 2p. For details, see the work of Shu

and Xue [12].

DQ is a global method. Its major advantage is that it

can obtain very accurate numerical results by using a

considerably small number of mesh points. As shown in

[15], for a Poisson problem, the DQ method with the

mesh size of 11 · 11 can achieve the same order of ac-

curacy as the second-order FD scheme with the mesh

size of 75 · 75. Since much less number of mesh points is

used in the DQ method, it requires much less compu-

tational effort and virtual storage. Both the PDQ and

Fourier expansion-based differential quadrature (FDQ)

methods can be applied to the periodic and non-periodic

problems. However, it was demonstrated in the book of

Shu [10] that PDQ method has a better performance

than the FDQ method for a non-periodic condition,

while the FDQ method has a better performance than

the PDQ method for the periodic condition since the

periodic condition is inherently built in the FDQ for-

mulation. So, in this work, the derivatives in the radial

direction are discretized by the PDQ method while the

derivatives in the circumferential direction are discret-

ized by the FDQ method.
5. Governing equations and boundary conditions

In this study, heat is generated uniformly within the

inner cylinder, while the outer cylinder is concentrated

with the inner cylinder and is cold. The imposed

boundary conditions are no-slip and isothermal on both

cylinder walls. As the cylinders are long enough, the flow

is considered to be two-dimensional. It is also assumed

that the flow is steady and laminar. The buoyancy force

is the driven force for the flow.

Based on the Boussinesq approximation, the non-

dimensional governing equation for the problem is

written in the vorticity-stream function formulation as

o2w
ox2

þ o2w
oy2

¼ x ð9Þ

u
ox
ox

þ v
ox
oy

¼ Pr
o2x
ox2

�
þ o2x

oy2

�
� PrRa

oT
ox

ð10Þ

u
oT
ox

þ v
oT
oy

¼ o2T
ox2

þ o2T
oy2

ð11Þ

where w denotes stream function, x represents vorticity,

T is temperature. Prandtl number is defined as Pr ¼
lCp=k, Rayleigh number is defined as Ra ¼
Cpq0gbL

3DT=ðkmÞ. Here l is viscosity, Cp is specific heat

at constant pressure, k is thermal conductivity, q0 is

reference density, g is gravitational acceleration, b is

thermal expansion coefficient, L is the reference length,

DT is the temperature difference between inner and outer
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Fig. 1. A schematic view of physical domain.
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cylinders, m is kinematic viscosity. Velocity components

u and v can be computed from the stream function w as

u ¼ ow
oy

; v ¼ � ow
ox

ð12Þ

The vorticity x is defined and computed by

x ¼ ou
oy

� ov
ox

ð13Þ

Like the low order finite difference schemes, the DQ

method requires the physical boundary to be a mesh

line. In the present study, however, the physical

boundaries may not coincide with the mesh lines. When

the DQ method is applied to this case, the physical

boundary conditions cannot be implemented in a

straightforward way. To overcome this difficulty, the

following transformation from the physical space to the

computational space is required:

n ¼ nðx; yÞ
g ¼ gðx; yÞ

�
ð14Þ

With this transformation, the governing equations (9)–

(11) can be transformed to the following forms in the

computational space:

A
o2w

on2
þ 2B

o2w
ogon

þ C
o2w
og2

þ G
ow
og

þ H
ow
on

¼ Jx ð15Þ

U
ox
on

þ V
ox
og

¼ Pr A
o2x

on2

�
þ 2B

o2x
onog

þ C
o2x
og2

þ G
ox
og

þ H
ox
on

�
� PrRa yg

oT
on

�
� yn

oT
og

�

ð16Þ

U
oT
on

þ V
oT
og

¼ A
o2T

on2

�
þ 2B

o2T
onog

þ C
o2T
og2

þ G
oT
og

þ H
oT
on

�
ð17Þ

where

U ¼ ow
og

; V ¼ � ow
on

A ¼ a=J ; B ¼ �r=J

C ¼ c=J ; G ¼ oB
on

þ oC
og

H ¼ oA
on

þ oD
og

;

a ¼ x2g þ y2g ; r ¼ xnxg þ ynyg; c ¼ x2n þ y2n ;

J ¼ xnyg � ynxg

xn, xg, yn and yg are respectively the abbreviations of

ox=on, ox=og, oy=on and oy=og.
As the global circulation flow along the inner cylin-

der does not exist, stream function values on the inner

and outer cylinders are set to zero. From the no-slip

condition, the velocities U and V on both the inner and

outer cylinder walls are zero. As shown in Fig. 1, the

boundary conditions for the problem can be taken as
U jg¼0;1 ¼ 0; V jg¼0;1 ¼ 0 ð18Þ

wjg¼0 ¼ 0; wjg¼1 ¼ 0 ð19Þ

T jg¼0 ¼ 1; T jg¼1 ¼ 0 ð20Þ

xjg¼0;1 ¼
C
J
o2w
og2

����
g¼0;1

¼ C
J
oU
og

����
g¼0;1

ð21Þ

ow
og

����
g¼0;1

¼ 0 ð22Þ

In the n direction, the periodic condition is used, which

is automatically implemented by the FDQ method.
6. Geometric relationship and analytical coordinate

transformation

A schematic view of a horizontal concentric annulus

between two elliptic cylinders is shown in Fig. 1. Nine

configurations of annulus between two elliptic cylinders

are shown in Fig. 2, where the circle is taken as a special

case of ellipse. For each ellipse, four elliptic eccentrici-

ties, i.e., e ¼ 0:25, 0.50, 0.75 and 0.95, are taken into

consideration. It should be noted that the elliptic ec-

centricity here is the elliptic eccentricity of the ellipse

itself, not the eccentricity of the location of the outer

cylinder to the inner cylinder. The geometric relation-

ships of the physical domains will be shown in the fol-

lowing.

The physical domain is formed between two con-

centric elliptic cylinders. For a single ellipse, it can be

represented by its eccentricity. Setting a as the major

axis and b as the minor axis, the eccentricity is defined as

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
=a ð23Þ

Defining c as the ratio of the minor axis length over the

major axis length of an ellipse,

cba ¼ b=a ð24Þ

we have the following relationships:
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(

Fig. 2. Nine configurations of an annulus between two elliptic

cylinders. Here ‘‘H’’ in the ‘‘H–V’’ configuration represents the

orientation of major axis of the outer ellipse which is placed

horizontally, ‘‘V’’ shows the orientation of major axis of the

inner ellipse which is placed vertically. Other configurations

have similar definitions. ‘‘O’’ represents a circle.

Y.D. Zhu et al. / International Journal of Heat and Mass Transfer 47 (2004) 797–808 801
cba ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
ð25Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
� a ð26Þ

The geometric relationship between the inner and the

outer elliptic cylinders can be represented by the aspect

ratio, which is fixed in this study, and the orientation as

well, i.e., the major axis of an ellipse is placed either

horizontally or vertically. Setting the aspect ratio as

rr ¼ �rro=�rri ð27Þ

where �rro denotes the radius of a circle with equivalent

area to the outer ellipse, �rri the radius of a circle with

equivalent area to the inner ellipse. Since the area of an

ellipse is pab, we have

�rro ¼
ffiffiffiffiffiffiffiffiffi
aobo

p
ð28aÞ

�rri ¼
ffiffiffiffiffiffiffiffi
aibi

p
ð28bÞ

where the subscripts o and i represent the outer and

inner ellipses respectively.

Using Eqs. (26) and (28), the axes of an ellipse can be

expressed in the following:

ao ¼
�rro

ð1� e2oÞ
1=4

; bo ¼ ð1� e2oÞ
1=4 � �rro ð29aÞ

ai ¼
�rri

ð1� e2i Þ
1=4

; bi ¼ ð1� e2i Þ
1=4 � �rri ð29bÞ
Defining the length scale L as

L ¼ �rro � �rri ð30Þ

we have the following formula for calculating the axes of

an ellipse:

ao
L

¼ 1

ð1� e2oÞ
1=4

� rr
rr � 1

ð31aÞ

bo
L

¼ ð1� e2oÞ
1=4 � rr

rr � 1
ð31bÞ

ai
L
¼ 1

ð1� e2i Þ
1=4

� 1

rr � 1
ð32aÞ

bi
L
¼ ð1� e2i Þ

1=4 � 1

rr � 1
ð32bÞ

With above relationships, the coordinate transformation

from the physical space to the computational space can

be exactly set up. The elliptic function for the concentric

elliptic cylinder can be written as

x
a

� �2

þ y
b

� �2

¼ 1 ð33Þ

With Eq. (33), the coordinate transformation for the

present problem is set up as

x ¼ � sin n � ½ri þ ðro � riÞg� ð34aÞ

y ¼ cos n � ri½ þ ðro � riÞg� ð34bÞ

where ri and ro are derived from Eq. (33) as

ro ¼
bo

bo
ao

� �2

ðsin nÞ2 þ ðcos nÞ2
� 	1

2

ð35aÞ

ri ¼
bi

bi
ai

� �2

ðsin nÞ2 þ ðcos nÞ2
� 	1

2

ð35bÞ

The transformed computational domain in the ðn; gÞ
plane is 06 g6 1 and 06 n6 p.
7. Results and discussion

In the present study, Rayleigh number is fixed at 104

in a steady laminar flow regime. Air is considered to be

the working fluid and Prandtl number is set to be 0.71.

The aspect ratio of the outer cylinder over the inner

cylinder is fixed at 2.6. Vertical and horizontal orienta-

tions are taken for either the outer or the inner cylinder.

Four elliptic eccentricities, i.e., 0.25, 0.50, 0.75 and 0.95,

are taken into consideration for each case. The PDQ

method is applied in the g direction with non-uniform

grid point distribution, while the FDQ method is applied

in the n direction with uniform grid point distribution.

The grid point distributions are taken as
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ni ¼
i� 1

N
� 2p; i ¼ 1; 2; . . . ;N ð36aÞ

gj ¼
1

2
1

�
� cos

j� 1

M � 1
p

� �	
; j ¼ 1; 2; . . . ;M ð36bÞ

After numerical discretization by the DQ method, the

resultant algebraic equations are solved by the SOR it-

eration method. The convergence criteria are chosen as

jRwjmax 6 10�4, jRT jmax 6 10�4 and jRxjmax 6 10�2 for w, T
and x equations respectively, where jRwjmax, jRT jmax and

jRxjmax are the maximum absolute residual values for the

stream function, temperature and vorticity equations

respectively. When all the three criteria are satisfied, the

convergent results are subsequently obtained. In the

present study, the initial values are set to zero for all w,
u, v, T and x at interior points.

7.1. Grid independent study

The grid-independent study is performed for the case

of Ra ¼ 104, rr ¼ 2:6, Pr ¼ 0:71, eo ¼ 0:50, ei ¼ 0:50,
and both outer and inner ellipses are in horizontal po-

sitions. The results are shown in Table 1. It is shown that

when mesh size is above 31· 17, the computed wmax and

Nu remain the same for this case. It should be noted that

the minimum mesh size for accurate numerical solution

changes according to the eccentricity of the ellipse and

the orientation of the physical domains. In this study,

mesh sizes of 31· 21, 51· 31, 61· 31, 71· 31 as well as

71· 41 are taken for different cases, based on the ec-

centricities and the orientations of both cylinders.
Table 1

Grid-independent study (Ra ¼ 104, rr ¼ 2:6, Pr ¼ 0:71,

eo ¼ 0:50, ei ¼ 0:50)

No. Orientation Grid size wmax Nu

1 H–H 17 · 13 13.97 3.26

2 21 · 15 13.18 3.25

3 31 · 17 13.20 3.25

4 31 · 21 13.20 3.25

5 41 · 21 13.20 3.25

6 51 · 21 13.20 3.25

7 51 · 31 13.20 3.25

Table 2

Validation of numerical results

No. eo ei Orientation

1 0.688 0.4 Vertical

2 0.86 0.4 Vertical

3 0.86 0.4 Vertical

4 0.9 0.4 Horizontal

5 0.9 0.4 Horizontal

6 0.9 0.4 Horizontal
7.2. Definition of Nusselt number

The local Nusselt number in the physical domain is

defined as

Nu ¼ � oT
on

ð37Þ

where o=on is the normal derivative outward from the

surface. In the computational domain, it becomes

Nu ¼ 1

J
ffiffiffi
c

p b
oT
on

�
� c

oT
og

�
ð38Þ

where J , b and c are defined previously. The average

Nusselt number is obtained by integrating the local

Nusselt numbers around the inner cylinder wall.

7.3. Validation of numerical results

As discussed in Section 1, publications are very few

on the study of natural convection in annuli between

concentric elliptic cylinders. The work of Elshamy et al.

[7] is one of such studies. Elshamy et al. [7] studied nu-

merically natural heat transfer for air bounded by two

confocal horizontal elliptic cylinders. The local and av-

erage Nusselt numbers are determined for Rayleigh

numbers from 104 to 2· 105 at some eccentricities of the

inner elliptic cylinder. Their numerical data were vali-

dated by comparison with some experimental data and

found in a good agreement. Thus, in this study, the re-

sults of Elshamy et al. [7] are used to validate the present

numerical results. The average Nusselt number Nu be-

tween the present work and the work of Elshamy et al.

[7] are compared in Table 2 for six cases. It should be

noted that due to the different ways of non-dimension-

alization between the work of Elshamy et al. [7] and the

present study, the equivalent factor has to be considered

in comparison of the average Nusselt numbers. In the

work of Elshamy et al. [7], the reference length for

Nusselt number is taken as the difference of the minor

axis lengths between the outer and inner elliptic cylin-

ders, while in present study, the reference length is taken

as the gap L, defined in Eq. (30). The factor is propor-

tional to the ratio of these two different reference lengths
Ra Nu (equivalent)

Elshamy et al. [7] Present

104 2.66 2.62

104 3.68 3.58

4 · 104 5.34 5.18

104 2.51 2.71

6 · 104 4.17 4.11

2 · 105 5.56 5.32



Table 4

Numerical results for ‘‘H–H’’ configuration (rr ¼ 2:6, Ra ¼ 104)

No. Configuration eo ei wmax Nui

1 H–H 0.25 0.25 13.07 3.30

2 0.50 12.70 3.27

3 0.75 11.94 3.15

4 0.95 12.68 2.63

5 0.50 0.25 13.54 3.28

6 0.50 13.20 3.25

7 0.75 12.24 3.13

8 0.95 11.70 2.60

9 0.75 0.25 13.24 3.50

10 0.50 12.97 3.50

11 0.75 13.23 3.06

12 0.95 9.70 2.55

13 0.95 0.25 11.20 3.72

14 0.50 11.13 3.60

15 0.75 10.94 3.33

16 0.95 10.17 2.74

Table 5

Numerical results for ‘‘H–V’’ configuration (rr ¼ 2:6, Ra ¼ 104)

No. Configuration eo ei wmax Nui

1 H–V 0.25 0.25 13.27 3.32

2 0.50 13.59 3.33

3 0.75 14.29 3.31

4 0.95 15.70 3.03

5 0.50 0.25 13.71 3.29

6 0.50 14.00 3.30

7 0.75 14.56 3.28
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for the average Nusselt numbers. Taking note that the

average Nusselt numbers from Elshamy et al. [7] in

Table 2 are the equivalent ones after taking into con-

sideration of the equivalent factors, it can be seen that

the present results generally agree well with those of

Elshamy et al. [7].

7.4. Analysis of flow and thermal fields

With the confidence of validation as well as grid in-

dependent study, the flow and thermal fields for nine

configurations of annuli as shown in Fig. 2 are numer-

ically analyzed. A sum of 68 different physical domains

is considered, which are based on the combination of

orientation and eccentricity of the two elliptic cylinders.

The values of wmax and Nu for these 68 cases are listed in

Tables 3–6, where the configuration denotes the position

of major axis of the ellipses. For example, ‘‘O–H’’ means

that the outer ellipse is a circle and the major axis of the

inner ellipse is in the horizontal direction. ‘‘V–O’’ indi-

cates that the major axis of the outer ellipse is in the

vertical direction and the inner ellipse is a circle. ‘‘H–V’’

denotes that the major axes of the outer and inner el-

lipses are respectively in the horizontal and vertical di-

rections.

The typical streamlines and isotherms are shown in

Figs. 3–10. For the streamlines, it is observed that the

flow is generally symmetrical about the vertical center-

line through the center of the inner elliptic cylinder. It

moves up along the inner heated elliptic cylinder. When

the flow reaches the top of the outer elliptic cylinder, it

then moves horizontally outwards and goes down along
Table 3

Numerical results for ‘‘O–O’’, ‘‘O–H’’, ‘‘O–V’’, ‘‘H–O’’, ‘‘V–O’’

configurations (rr ¼ 2:6, Ra ¼ 104)

No. Configuration eo ei wmax Nui

1 O–O 0 0 13.02 3.32

2 O–H 0 0.25 12.92 3.31

3 0.50 12.58 3.28

4 0.75 12.00 3.16

5 0.95 12.90 2.65

6 O–V 0 0.25 13.12 3.32

7 0.50 13.45 3.34

8 0.75 14.18 3.32

9 0.95 15.66 3.02

10 H–O 0.25 0 13.17 3.31

11 0.50 13.63 3.29

12 0.75 13.31 3.50

13 0.95 11.22 3.76

14 V–O 0.25 0 12.88 3.32

15 0.50 12.56 3.34

16 0.75 13.48 3.30

8 0.95 15.76 3.09

9 0.75 0.25 13.39 3.49

10 0.50 13.65 3.46

11 0.75 14.35 3.31

12 0.95 15.23 3.46

13 0.95 0.25 11.24 3.80

14 0.50 11.30 3.96

15 0.75 11.45 4.55

16 0.88 11.62 34.41
the boundary of the outer elliptic cylinder. The details

are discussed below.

The ‘‘O–O’’ configuration is actually the annulus

between two circular cylinders. This case has been well

studied by many researchers such as Shu et al. [16]. The

present results of the maximum stream function value

and the average Nusselt number agree very well with

those of Shu et al. [16].

For the ‘‘O–H’’ configuration, when ei increases from
0 to 0.75, two vortices exist in the streamlines above the

centre of the inner cylinder, and move to the top of the

physical domain. The maximum stream function value



Table 6

Numerical results for ‘‘V–H’’ and ‘‘V–V’’ configurations

(rr ¼ 2:6, Ra ¼ 104)

No. Configuration eo ei wmax Nui

1 V–H 0.25 0.25 12.78 3.31

2 0.50 12.48 3.28

3 0.75 12.13 3.16

4 0.95 13.10 2.67

5 0.50 0.25 12.53 3.33

6 0.50 12.51 3.30

7 0.75 12.86 3.16

8 0.95 13.66 2.78

9 V–V 0.25 0.25 12.97 3.33

10 0.50 13.30 3.34

11 0.75 14.05 3.33

12 0.95 15.60 3.00

13 0.50 0.25 12.60 3.34

14 0.50 12.80 3.36

15 0.75 13.50 3.35

16 0.95 15.38 3.00

17 0.75 0.25 13.41 3.31

18 0.50 13.17 3.35

19 0.75 12.55 3.37

20 0.95 13.96 3.05
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decreases from 13.02 to 12.00, and then increases to

12.90 when ei increases to 0.95, as shown in Table 3.

Two additional vortices appear below the inner cylinder

at ei ¼ 0:95 due to the enlarged space below the inner

cylinder. This results in a slightly higher maximum

stream function value. When ei increases from 0.25 to

0.95, the gradient of temperature around the inner cyl-

inder gets smaller, and the average Nusselt number de-

creases gradually from 3.32 to 2.65. The typical

streamlines and isotherms for the case of eo ¼ 0,

ei ¼ 0:95 are shown in Fig. 3, where four vortices can be

seen clearly.
Streamlines

Fig. 3. Typical streamlines and isotherms for ‘‘O–H’’ configu
For the ‘‘O–V’’ configuration, two vortices in the

streamlines locate beside the inner cylinder, and no ad-

ditional vortex appears. When ei increases from 0.25 to

0.95, the inner cylinder occupies less space in the hori-

zontal direction, thus the buoyancy force takes more

effect, and the maximum stream function value increases

gradually from 13.12 to 15.66, as indicated in Table 3.

For ei ¼ 0:25, 0.50 and 0.75, one plume appears above

the inner cylinder in the isotherms, and the average

Nusselt number keeps almost the same. Then it de-

creases from 3.32 to 3.02 when ei increases from 0.75 to

0.95, as two plumes appear above the inner cylinder in

the isotherms. The typical streamlines and isotherms for

the case of eo ¼ 0, ei ¼ 0:95 are shown in Fig. 4, where

the two plumes can be seen clearly.

For the ‘‘H–O’’ configuration, when eo increases

from 0.25 to 0.95, the maximum stream function value

changes irregularly, and so does the average Nusselt

number. It is indicated in Table 3 that the maximum

stream function value increases from 13.17 to 13.63

when eo increases from 0.25 to 0.50. Two vortices exist

beside the inner circular cylinder. Two additional vor-

tices appear above the inner cylinder at eo ¼ 0:75 when

the space above the inner cylinder reduces to a certain

amount. As two additional vortices locate on top of the

inner cylinder, they reduce the strength of the stream

function, which results in a slightly smaller stream

function value. When eo increases further to 0.95, it

decreases further to 11.22 due to a larger horizontal gap

between the two cylinders in the physical domain. When

eo increases from 0.25 to 0.50, the only plume gets wider

above the inner cylinder in the isotherms, and Nu re-

duces slightly from 3.31 to 3.29. At eo ¼ 0:75 and 0.95,

two plumes plus one additional one in a reverse direc-

tion come out when the space above the top of the inner

cylinder reduces to an appropriate level, where the ad-

ditional plume in the reverse direction produces thermal

boundary layer to the inner cylinder. The average Nus-

selt number then increases gradually with the increase of
Isotherms

ration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0, ei ¼ 0:95).



Streamlines Isotherms

Fig. 6. Typical streamlines and isotherms for ‘‘V–O’’ configu-

ration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0:75, ei ¼ 0).

Streamlines Isotherms

Fig. 5. Typical streamlines and isotherms for ‘‘H–O’’ configuration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0:75, ei ¼ 0).

Streamlines Isotherms

Fig. 4. Typical streamlines and isotherms for ‘‘O–V’’ configuration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0, ei ¼ 0:95).
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the eccentricity. The typical streamlines and isotherms

for the case of eo ¼ 0:75, ei ¼ 0 are shown in Fig. 5,

where four vortices and three plumes can be seen clearly.

For the ‘‘V–O’’ configuration, the flow and thermal

patterns change very little. There is a pair of vortices.

When eo increases, the two vortices shift up gradually.

When eo increases from 0.25 to 0.50, the two vortices
shift up to certain positions. As a result, the space be-

tween the two cylinders along the horizontal axis re-

duces, and the maximum stream function value reduces

from 12.88 to 12.56. When eo further increases to 0.75,

the two vortices shift to the locations above the inner

cylinder, where the vertical gap is increased. This helps

to increase the strength of the stream function in the

space between the two cylinders and leads to the increase

of the maximum stream function value from 12.56 to

13.48, as shown in Table 3. One plume exists for this

case. The average Nusselt number keeps little change for

eo ¼ 0:25 and 0.50, but reduces slightly from 3.34 to 3.30

when eo increases from 0.50 to 0.75. The typical

streamlines and isotherms for the case of eo ¼ 0:75,
ei ¼ 0 are shown in Fig. 6, where two vortices and one

plume can be seen clearly.

As shown in Table 4, for the ‘‘H–H’’ configuration,

there are 16 cases studied in this work. When eo ¼ 0:25,
0.5, and ei increases from 0.25 to 0.95, the flow and

thermal patterns are similar to the case of ‘‘O–H’’ con-

figuration. However, when eo is fixed at 0.75, and ei is
increased from 0.25 to 0.95, the flow and thermal patterns

are different from the case of ‘‘O–H’’ configuration. With

ei ¼ 0:25 and 0.50, there are four vortices instead of two

developed above the inner cylinder, and two plumes plus



(a) 

(b) 

Streamlines Isotherms

Fig. 7. Typical streamlines and isotherms for ‘‘H–H’’ configuration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6): (a) eo ¼ 0:75, ei ¼ 0:50, (b)

eo ¼ 0:95, ei ¼ 0:75.

(a) 

(b) 

Streamlines Isotherms

Fig. 8. Typical streamlines and isotherms for ‘‘H–V’’ configuration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6): (a) eo ¼ 0:75, ei ¼ 0:50, (b)

eo ¼ 0:95, ei ¼ 0:88.
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one additional plume in the inverse direction appear in

the isotherms. The additional plume produces an addi-
tional narrow thermal boundary layer at the top of the

inner cylinder and thus increases Nu. As discussed above,



Streamlines Isotherms

Fig. 10. Typical streamlines and isotherms for ‘‘V–V’’ config-

uration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0:75, ei ¼ 0:95).

Streamlines Isotherms

Fig. 9. Typical streamlines and isotherms for ‘‘V–H’’ configuration (Ra ¼ 104, Pr ¼ 0:71, rr ¼ 2:6, eo ¼ 0:50, ei ¼ 0:95).
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the two additional vortices are developed probably due to

the appropriate space above the inner cylinder in the

physical domain. The two additional vortices located

above the inner cylinder reduce the strength of the flow

and lead to the smaller maximum stream function value.

The above flow and thermal patterns can be observed in

Fig. 7(a) for the case of eo ¼ 0:75, ei ¼ 0:5. When ei is
further increased, the inner cylinder becomes wider and

wider, which forces the primary flow to move upward and

downward. As a result, the top two vortices will gradually

disappear. So, at ei ¼ 0:75 and 0.95, there are only two

vortices located beside the inner cylinder, and only one

plume appears in the isotherms. When eo is fixed at 0.95,

and ei is increased from 0.25 to 0.95, the flow and thermal

patterns change very little, which are shown in Fig. 7(b)

for the case of eo ¼ 0:95, ei ¼ 0:75. There is a pair of

vortices located beside the inner cylinder, and two plumes

appear above the inner cylinder.
For the ‘‘H–V’’ configuration, there are 16 cases

studied in this work. The maximum stream function

values and average Nusselt numbers of these cases are

shown in Table 5. Like the ‘‘H–H’’ configuration, when

eo ¼ 0:25, 0.5, and ei increases from 0.25 to 0.95, the flow

and thermal patterns are similar to the case of ‘‘O–V’’

configuration. When eo is taken as 0.75, and ei is in-

creased from 0.25 to 0.75, the flow and thermal patterns

are different from the cases of eo ¼ 0:25, 0.5. There are

four vortices above the inner cylinder, and the strength

of the stream function value reduces with the increases

of ei. Accordingly, two plumes plus one plume in a re-

verse direction occur above the inner cylinder. The Nu
decreases gradually from 3.49 to 3.31 when ei increases
from 0.25 to 0.75, since the thin boundary layer at the

top of the inner cylinder produced by the additional

plume in a reverse direction gets weaker and weaker. It

then increases to 3.46 at ei ¼ 0:95, where the ends of the
major axes of the inner cylinder is very close to the outer

boundary, and conduction takes more effect, leading to

the increase of Nu. The typical flow and thermal patterns

of this case can be seen from Fig. 8(a) where eo ¼ 0:75,
ei ¼ 0:5. When eo is fixed at 0.95, the outer cylinder

becomes very wider and the eccentricity of the inner

cylinder becomes less effective. The wmax keeps little

change for all the eccentricities of the inner elliptic cyl-

inder. The Nu increases gradually from 3.80 to 4.55 when

ei increases from 0.25 to 0.75, while it increases from

4.55 to 34.41 when ei increases from 0.75 to 0.88. The

increase is much larger when ei changes from 0.75 to 0.88

than that when ei changes from 0.25 to 0.75, since at

ei ¼ 0:88, the ends of the inner cylinder are very close to

the outer cylinder and conduction takes more effect. At

ei ¼ 0:88, the end of the inner cylinder almost touches

the outer cylinder and Nu increases greatly. The flow and

thermal patterns for the case of eo ¼ 0:95, ei ¼ 0:88 are

shown in Fig. 8(b). It is indicated that we failed to get
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converged results for the case of eo ¼ 0:95, ei ¼ 0:95
because the ends of the inner cylinder touch the outer

cylinder for this case.

For the ‘‘V–H’’ configuration, the flow and thermal

patterns are similar to the case of ‘‘O–H’’ configuration.

The maximum stream function values and average

Nusselt numbers of this configuration are given in Table

6, and the typical streamlines and isotherms for the case

of eo ¼ 0:50, ei ¼ 0:95 are shown in Fig. 9, which is

similar to Fig. 3.

For the ‘‘V–V’’ configuration, the flow and thermal

patterns are similar to the case of ‘‘O–V’’ configuration.

The maximum stream function values and average

Nusselt numbers of this configuration are displayed in

Table 6, and the typical streamlines and isotherms for

the case of eo ¼ 0:75, ei ¼ 0:95 are shown in Fig. 10,

which is similar to Fig. 4.
8. Conclusions

In this paper, natural convection in horizontal annuli

between two elliptic cylinders is numerically studied.

The DQ method is employed to discretize the derivatives

in the governing equations and boundary conditions.

The computational results are compared with avail-

able data in the literature and good agreement has been

achieved. A sum of 68 different physical domains has

been considered. A systematic study is conducted for the

analysis of flow and thermal fields at different eccen-

tricities of inner and outer elliptic cylinders. It was found

that the position of the major axis of the inner elliptic

cylinder takes effect on the streamlines, and very little

effect on the average Nusselt number. When the major

axis of the inner elliptic cylinder is in a vertical position,

the maximum stream function value is increased, and in

general, the average Nusselt number is slightly higher

that that in a horizontal position. For the streamlines

and isotherms, when the major axis of the outer cylinder

is placed horizontally, at an appropriate space above the

inner cylinder, two additional vortices in the streamlines

and three plumes in the isotherms may occur and such

phenomena need further investigation.
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